MATH 54 - MOCK MIDTERM 3

PEYAM RYAN TABRIZIAN

Name:

Instructions: This is a mock midterm, designed to give you an idea of what the actual midterm will look like!

1		10
2		10
3		30
4		30
5		20
Total		100

[^0]1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}. Write your answers in the box below!

NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) If A is similar to B, then $\operatorname{det}(A)=\operatorname{det}(B)$
(b) If A is a 3×3 matrix with eigenvalues $\lambda=1,4,0$, then A is diagonalizable
(c) If A is a 3×3 matrix with eigenvalues $\lambda=1,4,0$, then A is invertible
(d) If A is a 4×4 matrix with eigenvalues $\lambda=1,2,2,3$, then $\operatorname{det}(A)=12$
(e) If λ is an eigenvalue of A, then $\operatorname{Nul}(\lambda I-A)$ could be $\{0\}$.

(a)	
(b)	
(c)	
(d)	
(e)	

2. (10 points) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!
(a) If A is diagonalizable, then A^{2} is diagonalizable
(b) If A has only one eigenvalue, then A is not diagonalizable

3. (30 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
8 & -4 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

4. (30 points) Solve the following system $\mathrm{x}^{\prime}=A \mathbf{x}$, where:

$$
A=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

5. (20 points, 10 points each)
(a) (10 points) Use undetermined coefficients to find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Note: You may use the fact that the general solution to $\mathrm{x}^{\prime}=A \mathbf{x}$ is: $\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+B e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(b) (10 points) Use variation of parameters to find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{c}
e^{2 t} \\
e^{4 t}
\end{array}\right]
$$

Note: You may use the fact that the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is: $\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+B e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

[^0]: Date: Friday, July 27th, 2012.

