MATH 54 – MOCK MIDTERM 3

PEYAM RYAN TABRIZIAN

Name: _____

Instructions: This is a mock midterm, designed to give you an idea of what the actual midterm will look like!

1	10
2	10
3	30
4	30
5	20
Total	100

Date: Friday, July 27th, 2012.

1. (10 points, 2 points each)

Label the following statements as **T** or **F**. Write your answers in the box below!

NOTE: In this question, you do **NOT** have to show your work! Don't spend *too* much time on each question!

- (a) If A is similar to B, then det(A) = det(B)
- (b) If A is a 3×3 matrix with eigenvalues $\lambda = 1, 4, 0$, then A is diagonalizable
- (c) If A is a 3×3 matrix with eigenvalues $\lambda = 1, 4, 0$, then A is invertible
- (d) If A is a 4×4 matrix with eigenvalues $\lambda = 1, 2, 2, 3$, then det(A) = 12
- (e) If λ is an eigenvalue of A, then $Nul(\lambda I A)$ could be $\{0\}$.

(a)	
(b)	
(c)	
(d)	
(e)	

2

2. (10 points) Label the following statements as **TRUE** or **FALSE**. In this question, you **HAVE** to justify your answer!!!

This means:

- If the answer is **TRUE**, you have to explain **WHY** it is true (possibly by citing a theorem)
- If the answer is **FALSE**, you have to give a specific **COUN-TEREXAMPLE**. You also have to explain why the counterexample is in fact a counterexample to the statement!
- (a) If A is diagonalizable, then A^2 is diagonalizable

(b) If A has only one eigenvalue, then A is not diagonalizable

3. (30 points) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$, where:

$$A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 8 & -4 & 7 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix}$$

4

4. (30 points) Solve the following system $\mathbf{x}' = A\mathbf{x}$, where:

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- 5. (20 points, 10 points each)
 - (a) (10 points) Use **undetermined coefficients** to find the general solution to $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$, where:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \mathbf{f}(t) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Note: You may use the fact that the general solution to $\mathbf{x}' = A\mathbf{x}$ is: $\mathbf{x}_0(t) = Ae^t \begin{bmatrix} 1\\ 0 \end{bmatrix} + Be^{3t} \begin{bmatrix} 1\\ 1 \end{bmatrix}$ (b) (10 points) Use variation of parameters to find the general solution to $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$, where:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \mathbf{f}(t) = \begin{bmatrix} e^{2t} \\ e^{4t} \end{bmatrix}$$

Note: You may use the fact that the general solution to $\mathbf{x}' = A\mathbf{x}$ is: $\mathbf{x}_0(t) = Ae^t \begin{bmatrix} 1\\ 0 \end{bmatrix} + Be^{3t} \begin{bmatrix} 1\\ 1 \end{bmatrix}$